DATES TO REMEMBER
May 22 4th Annual Perennial Peanut Field Day, Moultrie, GA
May 27 Corn Silage Field Day, Citra (http://www.animal.ufl.edu)

IN THIS ISSUE

COTTON
- Planting Cotton and Peanut in Dry Soil .. 2
- Section 18 Applied for Fungicide to Reduce Fusarium Hardlock in Cotton .. 2

FORAGE
- Clover Pastures .. 2
- The Legume - *Aeschynomene americana* ... 2

SOYBEAN
- Soybean Varieties ... 3

MISCELLANEOUS
- Kill Cover Crops Early ... 3
- Prowl H₂O: Familiar Product, New Formulation 3
- Intentions to Plant Report for 2004 .. 4
- Updated Publications .. 4
- NEW Publications ... 5
Planting Cotton and Peanut in Dry Soil

Record dry weather has been recorded in March and April of this year for much of the row crop region. May is often a very dry month meaning that any subsoil moisture will be taken up by weeds, cover crops or the soil will dry out if tillage is done. Cotton normally does well if planted by the middle of June if there is adequate moisture at that time to start the crop. Cotton planted in July or that emerges in July never matures even though it fruits up well and looks good through the season. “Don’t plant cotton in July and expect to make any yield”. Peanut may be planted 2-3 inches deep if needed to plant into moisture. Cotton should never be planted over 1 inch deep as it will not emerge from deeper depths. It is best for either to wait until soil moisture is adequate to plant either of these crops. Soils can heat up and reduce germination of either crop if they are allowed to lay in the soil for a very long period or they can be injured by soil insects. Cotton has often been dusted in with no surface or subsoil moisture and planted at a depth of ½ to ¾ inch and a small shower can result in germination and then it will die after a few days due to having no subsoil moisture.

DLW

Section 18 Applied for Fungicide to Reduce Fusarium Hardlock in Cotton

Questions have been asked about the availability of Topsin M for bloom time applications to cotton to control hardlock. A section 18 has been applied for and it appears that it is on schedule to get approval by June 1 of this year. Cotton does not normally start blooming until around late June to mid July depending on the planting date. This product will be labeled for 4 applications during the bloom period with a total of 4 lbs. of product per acre. The label will allow ½ to 1 lb applications in each of the applications. The purpose of these applications is to protect the blooms from infection which will lead to hardlocked bolls at boll opening time. Applications may be made weekly or every other week for the bloom period which viable blooms are usually set until around the 10th of September. The first 4-6 weeks of bloom usually account for much of the yield of cotton.

DLW

Clover Pastures

There has been above average clover growth this spring. Now is the time to manage for seed production on white clover and arrowleaf clover. Cattle should be removed from heavily grazed white clover pastures for about two weeks to allow for reseeding. After flowers have begun to turn brown, grazing may be resumed. Arrowleaf clover pastures should be treated similarly. When flowering starts either remove cattle or reduce stocking rate to allow for adequate reseeding.

CGC

The Legume - Aeschynomene americana

Is this the year to overseed Aeschynomene americana (joint vetch or deer vetch) onto your pastures? Aeschynomene americana can put extra pounds on calves this summer. With high calf prices, the chances of paying for the cost of overseeding plus make a profit are increased.

Research at the Agronomy Forage Field Lab (Beef Research Unit) has consisantly shown increased weight gain on yearling cattle in July and August when aeschynomene is available. This year we have had a dry April and it looks like we will have a dry
May. Very early planting and early development of the crop will not be possible. Aeschynomene should be planted as soon as the summer rains begin which is usually in the first half of June. If planting is delayed past the middle of June, the amount of grazing time is reduced due to the delayed development of the aeshynomene. For additional information on seeding method and seeding rate, see the fact sheet at the web site:

http://edis.ifas.ufl.edu/AA189.

Aeschynomene is a summer annual legume that is adapted to moist flatwoods soils. Do not plant on droughty upland sands.

CGC

Soybean Varieties

We have been asked about soybean varieties by producers all over the state since prices of soybeans are around $10 per bushel. Florida no longer does variety testing with soybeans but information can be found on the Georgia web site at www.griffin.peachnet.edu/swvt

<http://www.griffin.peachnet.edu/swvt>

There are a lot of good varieties out there that are Roundup Ready that can be produced for less than $100 per acre cash costs. However, make sure there are grain elevators in the area or at some convenient location that will accept the soybeans when they are ready to harvest. Soybeans do not weather well in the field after maturity and must be harvested timely.

DLW

Kill Cover Crops Early

Cover crops for strip tilling crops in should be killed early enough that they do not deplete subsoil moisture needed for the summer crop. As cover crops get larger, they will utilize more soil moisture. Also, most herbicides take longer to work when water stressed allowing more soil moisture to be used. Never plant crops into living cover crops since they harbor soil insects and will make the likelihood of having grasshopper, and cutworm problems more severe. Data from many of our trials show reduced yields when planting into living cover crops since they will compete as severely as weeds with the crop.

DLW

Prowl H₂O: Familiar Product, New Formulation

Prowl 3.3EC is a familiar “yellow dye” herbicide that has been used to control annual grasses and small-seeded broadleaf weeds for many years. Although this product is relatively inexpensive and very effective, there are some disadvantages to its use. The most notable is the yellow staining of spray tanks, truck beds, clothing, etc.

Prowl H₂O is a microencapsulated formulation of pendimethalin (the active ingredient of Prowl 3.3EC). The microencapsulation process forms a thin polymer layer around the herbicide molecules. These polymers will then quickly degrade in soil leaving the active herbicide molecules available for uptake by weeds. The polymers also shield the herbicide molecule from staining spray tanks, or other surfaces, while in solution. As an added benefit, microencapsulation will also greatly reduce pesticide odor.

Prowl H₂O is a 3.8 lb/gallon and is currently labeled for use in Florida at a rate of 2 to 3 pt/A. University research has shown that Prowl H₂O and Prowl 3.3EC provide equal
levels of weed control. Additionally, Prowl H₂O has been shown to be less injurious than Prowl 3.3EC when applied broadcast to 2-leaf cotton. There will likely be a price differential between Prowl H₂O and Prowl 3.3EC. However, calls made to chemical dealers in Northwest Florida in March found no Prowl H₂O in stock. Therefore, availability for the 2004 growing season will likely be limited.

JAF

Intentions to Plant Report for 2004

According to surveys by the USDA National Agricultural Statistics Service, farmers expect to plant the following acreage of agronomic crops in 2004:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>65</td>
<td>87</td>
<td>79,004</td>
<td>100</td>
</tr>
<tr>
<td>Wheat, all</td>
<td>20</td>
<td>100</td>
<td>59,462</td>
<td>96</td>
</tr>
<tr>
<td>Hay, all</td>
<td>250</td>
<td>98</td>
<td>63,731</td>
<td>101</td>
</tr>
<tr>
<td>Soybeans</td>
<td>15</td>
<td>115</td>
<td>75,411</td>
<td>103</td>
</tr>
<tr>
<td>Peanuts</td>
<td>140</td>
<td>112</td>
<td>1,366</td>
<td>102</td>
</tr>
<tr>
<td>Cotton, all</td>
<td>105</td>
<td>112</td>
<td>14,401.6</td>
<td>107</td>
</tr>
<tr>
<td>Tobacco, all</td>
<td>4.2</td>
<td>95</td>
<td>414.5</td>
<td>100</td>
</tr>
</tbody>
</table>

In addition to the above survey, farmers in certain states were asked the percentage of their acreage that will be planted to transgenic varieties. For corn, the acreage in transgenic varieties will be 46% in 2004, compared to 40% in 2003. The respective figures for cotton and soybeans are 76% vs. 73% and 86% vs. 81%.

EBW

Updated Publications

- SS-AGR-01 Weed Management in Tobacco - 2004
- SS-AGR-02 Weed Management in Corn - 2004
- SS-AGR-03 Weed Management in Peanuts - 2004
- SS-AGR-04 Weed Management in Cotton - 2004
- SS-AGR-05 Weed Management in Soybeans - 2004
- SS-AGR-06 Weed Management in Sorghum - 2004
- SS-AGR-07 Weed Management in Small Grains Harvested for Grain - 2004
- SS-AGR-08 Weed Management in Pastures and Rangeland - 2004
SS-AGR-10 Weed Management in Rice - 2004
SS-AGR-11 Weed Management in Transgenic, Herbicide-Resistant Soybeans
SS-AGR-12 Florida’s Organo-Auxin Herbicide Rule - 2004
SS-AGR-13 Weed Management in Transgenic, Herbicide-Resistant Cotton
SS-AGR-14 Herbicide Prepackage Mixtures - 2004
SS-AGR-15 Diagnosing Herbicide Injury - 2004
SS-AGR-27 Conversion Factors
SS-AGR-100 Principles of Weed Management
SS-AGR-103 Recrop Intervals for Herbicides Used in Cotton, Corn and Peanut in Florida
SS-AGR-104 Trade Name, Common Name and Registrant of Some Herbicides
SS-AGR-106 Names and Addresses of Some Herbicide Manufacturers and Formulators
SS-AGR-108 Using Herbicides Safely and Herbicide Toxicity
SS-AGR-109 Adjuvants
SS-AGR-110 Weed Management in Grazed Fence Rows and Non-Cropped Areas
SS-AGR-111 Weed Management in Fence Rows and Non-Cropped Areas
SS-AGR-112 Poison Control Centers
SS-AGR-239 Florida Sugarcane Handbook: Table of Contents

NEW Publications

SS-AGR-212 Sucrose Accumulation Maturity Curves for CP 70-1133
SS-AGR-213 Sucrose Accumulation Maturity Curves for CP 72-2086
SS-AGR-214 Sucrose Accumulation Maturity Curves for CP 78-1628
SS-AGR-216 Sucrose Accumulation Maturity Curves for CP 80-1743
SS-AGR-217 Sucrose Accumulation Maturity Curves for CP 80-1827
SS-AGR-218 Sucrose Accumulation Maturity Curves for CP 84-1198
SS-AGR-219 Sucrose Accumulation Maturity Curves for CP 88-1762
SS-AGR-220 Sucrose Accumulation Maturity Curves for CP 89-2143
SS-AGR-221 Maturity Curves and Harvest Schedule Recommendations for CP Sugarcane Varieties

The use of trade names does not constitute a guarantee or warrant of products named and does not signify approval to the exclusion of similar products.