Features:

Crops:
- Aflatoxin in Peanuts .. Page 2
- Drying Peanuts .. Page 2
- Small Grain Seed Supplies Page 3

Forage:
- Minimizing Hay Feeding Losses—Protect your Hay .. Page 3

Weed: Control:
- Post-Harvest Palmer Amaranth Control Page 4
- EPA Plans to Move Ahead With NPDES........ Page 5

Miscellaneous:
- Calendar ... Page 6
Aflatoxin in Peanuts

Aflatoxin often occurs when peanuts have been grown without irrigation under excessively dry conditions. Aflatoxin is produced by the Aspergillus flavus fungus during periods of extreme water stress and high soil temperatures. Lesser corn stalk borers often bore into the kernels under these conditions and contribute to the problem. The mold is most active at seed moisture contents of 15-35% and where the skin has been broken. Growers with irrigation often dig and pick dry corners of fields that are not irrigated separately from those under a pivot to keep from contaminating several loads of peanuts. If peanuts are found to have aflatoxin, they will be classified as Seg. III and will go for oil stock. Nuts will not go into the edible trade. Seg. III peanuts have less value to growers so growers should consider management that will prevent aflatoxin. Our research has shown that peanuts grown in rotation with bahiagrass will have little or no aflatoxin while treatments alongside in standard row crop rotations can have aflatoxin under severe stress conditions. This is due to deeper rooting following bahiagrass and less disease and nematode problems.

Drying Peanuts

Peanuts are normally dug and inverted allowing the nuts to be exposed to the sun and air without soil contact for 3 days prior to picking. Moisture content of the peanut during this period will go from 40-50% down to 20-25%. After drying to this level peanuts will be loose in the shell. Upon picking peanuts, they will need to be dried further, usually taking 12 hours or longer in drying wagon at temperatures of 95 degrees °F. Moisture content should be in the 8-10% range for storage. Drying peanuts to less than 7% can result in damage to the peanut seed and may lower germination rates. David Wright.
Small Grain Seed Supplies

Small grain seed is in short supply this year due to several factors. Weather conditions were unusually wet during harvest of crops last fall—this excess moisture delayed fields being available to plant, and the record rainfall during planting season resulted in little small grain being planted. All of these factors resulted in short seed supply of the best varieties for this year. The high prices now being offered for wheat has increased the interest in planting with little of the recommended varieties being available for planting. There will be varieties imported from other areas that are not as well adapted and will require a higher level of management due to not having the pest package needed for our area. Likewise, vernalization or chilling hours needed for heading out will be different for varieties developed outside our area. In many cases varieties will not head out if high chilling hours are required or they will head out too soon and heads will be killed by a late frost. Use only recommended varieties. Information from our area can be found at http://www.swvt.uga.edu/2009/sm09/AP100-contents.pdf

Forages

Minimizing Hay Feeding Losses—Protect your Hay

Hay supply keeps increasing throughout the state, and with the supply comes storage, feeding, and how to minimize feeding losses. How we can minimize the losses in storage includes choosing a desirable site that is well drained and close to the feeding area. It also includes the bale orientation in the field; large round bales should be placed in rows that run north and south in order to allow maximum exposure of the rounded sides to the sun. What about feeding losses? If feeding your animals directly in the pasture, select a dry spot to place the bale. Place a rack or barrier between the animal and the hay, this separation will help to keep the hay in one spot and keep the animal from trampling and defecating on it. Racks also help when consumption of sand is a concern.
Post-Harvest Palmer Amaranth Control

Many cotton and peanut farmers have been fighting Palmer amaranth all season and harvest is finally here. Regrettably, we can’t give up on this horrible weed yet. With daytime temperatures still into the mid-80’s or 90’s and 12 hours of sunlight, Palmer amaranth will still germinate and produce seed. Therefore, giving up on Palmer right now can undo all the hard work that has been expended by allowing a late seed crop and develop.

After peanuts or cotton is out of the field, we can use 2,4-D or Weedmaster without as much concern for sensitive crops. These herbicides are inexpensive and highly effective on Palmer amaranth, even those that are resistant to glyphosate, Cadre, or both. One application of 2,4-D or Weedmaster will likely provide enough control that a second Palmer amaranth crop will not have time to develop before cool weather brings seed germination to an end.

Palmer amaranth is a great problem for crop production, but seed longevity for this plant is quite short. A few years of proactive management and the impact of this weed can be reduced. But, allowing multiple seed crops, especially those that develop late in the season when crop competition has been removed, can be particularly devastating.
EPA Plans to Move Ahead With NPDES

Lisa Jackson, Administrator of the U.S. Environmental Protection Agency (EPA), announced on September 23 that the EPA intends to issue a National Pollutant Discharge Elimination System (NPDES) Pesticide General Permit (PGP) for point source discharges from the application of pesticides to waters of the United States. This action is in response to a January 7, 2009, decision by the U.S 6th Circuit Court of Appeals which vacated EPA’s 2006 rulemaking that certain pesticide applications to U.S. waters did not require NPDES permits if they were used in accordance with the label. As a result of the Court’s decision, NPDES permits will be required by April 9, 2011, for pesticide application discharges directly to waters of the United States to control pests. EPA provided public notice of the draft PGP on June 4, 2010, for the control of discharges to waters of the U.S. for the following four pesticide use patterns:

- Mosquito and other flying insect pest control;
- Aquatic weed and algae control;
- Aquatic nuisance animal control; and
- Forest canopy pest control.

The Agency plans to issue its final PGP in December 2010. Once issued, the PGP will be implemented in states, territories, Indian Country lands and federal facilities where EPA is the NPDES permitting authority. In the other 44 states, including Florida, and the Virgin Islands, the state or territory as the NPDES permitting authority will issue permits similar to the one currently under development at EPA. The Agency has been working closely with those states to concurrently develop their NPDES permits for pesticide discharges. Full details concerning NPDES are available at http://cfpub.epa.gov/npdes/home.cfm?program_id=410
Calendar

To follow the link, press “Ctrl” and put cursor over link, and “click.”

Oct. 5 9th Annual Fall Field Day and Open House—North Florida REC http://nfrec.ifas.ufl.edu
Oct. 12 Ona Field Day http://rcrec-onaa.ifas.ufl.edu/
Ona REC, Ona

Oct. 11-14 UF-CTA Potential Invasive Pests Workshop
Coconut Grove (Miami), Mayfair Hotel

Moultrie, Georgia

Oct. 31-Nov 3 American Society of Agronomy Annual Meeting http://www.acsmeetings.org/,
Long Beach, California

Nov. 16-18 Tomato Disease Workshop, Balm (Gulf Coast REC)