Features:

Crops:

June planting of cotton and peanutPage 2
High rainfall and corn fertilizationPage 2

Forage:

The importance of stubble heightPage 3

Weeds and Pesticides:

Weed control in newly established bahiagrassPage 5
Minor uses web page updatedPage 5
Nutsedges and fall panicum control in ricePage 6

Miscellaneous:

Dr. Ken Quesenberry—Agronomy interim chairPage 2
Calendar of events ..Page 7

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Employment Opportunity-Affirmative Action Employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap or national origin. For information on obtaining other extension publications, contact your county Cooperative Extension Office. Florida Cooperative Extension Service/Institute of Food and Agricultural Sciences/University of Florida/Millie Ferrer-Chancy, Interim Dean.

“Agronomy Notes” is prepared by: Ken Quesenberry, Interim Chair and Y. Newman, Extension Forage Specialist (yenew@ufl.edu); J. Ferrell, Extension Weed Specialist (jferrel@ufl.edu); F. Fishel, Pesticide Information Director (weeddr@ufl.edu); Calvin Odero, Weed Specialist (docodero@ufl.edu); B. Sellers, Extension Weed Specialist (sellersb@ufl.edu); D. Wright, Extension Agronomist (wright@ufl.edu). The use of trade names does not constitute a guarantee or warrant of products named and does not signify approval to the exclusion of similar products.
June planting of cotton and peanut

Even though we have had a tropical storm to enter the state much of the cotton and peanut regions are still very dry, and creeks and lakes are at record lows in many places. Growers still have time for cotton and peanut planting into June. Cotton can do very well planted as late as the third week of June but should be planted before the first of July. Peanuts usually do best when planted by the first week of June. Planting into dry soils can lead to weed and fertility problems but typical summer rainfall patterns in late June and July allows growers to work through these issues.

High rainfall and corn fertilization

Tropical storm ‘Beryl’ weakened over northern Florida dumping heavy rain on Memorial day in some areas. Corn growers in the Live Oak area received anywhere from a few to more than 10 inches of rain on corn. Most of the corn is in the brown silk stage and growers have been asking about fertilization at this stage. Irrigated corn at this stage will not need additional fertilizer. Most of the nutrients needed for the crop are already in the plant and the main thing to be concerned about is plant diseases. As little as 10% leaf infection can lead to more than a 75% reduction in photosynthesis. The environment is very conducive to disease build up as long as the humidity remains high. Some growers have made one fungicide application and should consider a second one with many fields having ponds that will take a few days to dry out.

Miscellaneous

Dr. Ken Quesenberry—Agronomy interim chair

Starting June 1 Dr. Ken Quesenberry will assume the role of interim Chair in the Agronomy Department.

Dr. Quesenberry is an emeritus professor in forage breeding and genetics. He has a bachelor’s degree in agriculture from Western Kentucky University and a PhD in crop science from the University of Kentucky.

Dr. Quesenberry takes the reins of the department as Dr. Gallo departs to University of Hawaii as the Dean of the College of Tropical Agriculture and Human Resources.

Congratulations to Dr. Gallo on her new position, and Welcome Dr. Quesenberry!
The Importance of Stubble Height

How short a pasture should be grazed or cut is one of the key factors in grazing and forage management and one entirely under your control. How much forage can be eaten or cut affects the quality and quantity, and the persistence of the forage plant. The selection of your grazing intensity is more important than any other single grazing management decision.

Different grasses have different growth habits. Some are sod types, like bahiagrass, others are bunch types like pearl millet. In the case of sod types, they store the energy reserves in thick rhizomes or underground stems right under the soil level. In these sod-type (decumbent) grasses, tillers grow through the leaf sheath to form a sod that creeps or spreads with further development of rhizomes and stolons, common in bermudagrass and limpograss. In addition, the growing points are low allowing the plant to be persistent under close grazing or defoliation. **The thicker the rhizomes and the lower the bud sites, the greater the ability of the plant to withstand lower stubble height defoliation.** Within sod type grasses, there are variations. Some will grow more upright than others (limpograss > stargrass and T-85 bermudagrass > coastal bermudagrass > bahiagrass). This is the order to follow when managing the stubble height: higher for limpograss compared to stargrass or Tifton 85, higher in stargrass and Tifton 85 compared to coastal, and higher in coastal compared to bahiagrass. In some cases, within a grass, there will be differences among cultivars. For example, Tifton 9 has a more upright growth than Pensacola or Argentine bahiagrass. Or in the case of perennial peanut, Arbrook has a more upright growth than Florigraze. The cultivars with more upright growth are less tolerant of closer defoliation.

The bunch-type forages include many summer annuals like pearl millet, cool-season forages like wheat, oats, or triticale, and most of the natives). Different from the sods, this type of forages, have a compact arrangement of their tillers coming within the sheath of the grass and with growing points that are elevated and not so close to the ground. **A rule of thumb for bunch type forages is to leave** a good portion of the above ground basal growth. In many cases this represents the lower 1/3 of the plant.

There is plenty of evidence that shows how when pastures are overstocked and overgrazed beyond their capacity to restore reserves (regardless of growth type), the plant reserves are depleted; if close grazing continues the plant will not have sufficient energy for re-growth, the root system stops growing resulting in weaken plants and eventual loss of the stand. The location of the tillers and growing buds influences how palatable and accessible they are to the livestock, and it also affects the ability to grow after defoliation. It is the combination of growth form and physiological type that determines the plant capacity to recuperate after being defoliated and dictates why some of them should be left with a higher stubble height.

(continues next page)
...continued (The Importance of Stubble Height)

Table 1 shows the minimum stubble heights recommended for the main forage plants in Florida based on use. You will notice that recommended stubble heights are slightly lower under rotational grazing compared to continuous for the same forage plant. Under rotational stocking the plants have obligated rest periods which allows for forage accumulation as opposed to continuous grazing where the animals have unlimited and uninterrupted access to the grazing area.

A general rule to follow is that the more stressful the conditions are, (heavy stocking rates, cold winter temperatures or atypical warm seasonal temperatures, prolonged drought), the more conservative the management of the stubble height should be. Preventive management, such as allowing a rest period until the plant can restore the adequate replenishment of reserves, destocking when in extreme drought conditions, closing of pastures when they have reached the critical stubble height, will save you from facing the crisis that comes with degraded pastures, no feed, no cash, and will save you the money associated with total renovation of pastures and/or weed control usually associated with overstocking.

Table 1. Minimum stubble heights for long term persistence of major forages in Florida based on use (hay or grazing).

<table>
<thead>
<tr>
<th></th>
<th>Hay</th>
<th>Rotational Grazing</th>
<th>Continuous Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INCHES</td>
<td>INCHES</td>
</tr>
<tr>
<td>Warm-season perennials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahiagrass</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Bermudagrass hybrids (Coastal)</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Bermudagrass (Tifton 85)</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Stargrass</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Limpograss</td>
<td>6</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Warm-season annual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl millet</td>
<td>6</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cool-season grasses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual ryegrass</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rye/oat</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Wheat/Triticale</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Legumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial peanut</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Clovers</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>White clover</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
 Weed Control in Newly Established Bahiagrass

Establishing a perennial grass from seed is always difficult. Whether it is for turf or pasture, the perennial grass always grows slower than the weeds for the first few months. During this time producers begin to wonder what herbicides would be safe during this initial “grow in” period.

In bahiagrass, there are few options until the grass reaches 6 inches in height. Prior to this, the bahiagrass is sensitive to most herbicides and any application will delay growth and prolong the weed problems. However, almost any broadleaf herbicide will be safe after bahiagrass reaches the 6” mark. We have tested triclopyr (Remedy), GrazonNext, 2,4-D, and 2,4-D + dicamba (Weedmaster, others) and all were equally safe. These herbicides will effectively control most annual broadleaf weeds and allow the seedling bahiagrass more time to establish.

Regrettably, there are no herbicides to control grass weeds and sedges. If annual grasses (crabgrass and goosegrass) or sedges are problematic, the only option is to mow the area until bahiagrass becomes established.

Minor Uses Web Page Updated

The EPA has updated its Web page for minor uses. The Minor Uses and Grower Resources Web page provides growers, registrants and other interested parties with information on the programs that the EPA is implementing to ensure safe pesticide tools are available for those who grow minor use crops. Minor use crops have fewer than 300,000 acres in production in the United States. The small acreage may provide insufficient economic incentive for pesticide companies (i.e., registrants) to keep their products registered for use on these crops, or to register new minor use pesticides.

The page was redesigned to include activities such as the crop grouping project, how to obtain a Codex Maximum Residue Limit, the MRL database and activities regarding the North American Free Trade Agreement and regional cooperation on tolerance harmonization. The revised Web page also provides easy, one-stop access to other related links, including the registration workplan, guidance on Pesticide Registration Improvement Act fee waivers, joint review activity, crop group tables and Canadian MRLs among others. This page will be revised and updated as new information becomes available. For more information, visit http://www.epa.gov/pesticides/minoruse/.
Nutsedges and Fall Panicum Control in Rice

Successful weed control is essential for economical rice production in the Everglades Agricultural Area (EAA). Permanent flooding is the main method used for controlling weeds in rice in the EAA. Flooding is only effective on semi-aquatic weeds whose growth can be retarded and ultimately controlled by standing water. To control rice weeds only by water management, permanent flooding (2 to 4 inches of water) should be applied at the two-leaf stage of rice to suppress emerged weeds and suppress weed seed germination. Care must be taken not to flood over and drown rice in lower areas of the field. Application of flooding when rice is more than the four-leaf stage results in unacceptable control of many weed species. Flooding rice typically does not provide acceptable control of nutsedges (yellow and purple) and fall panicum in the EAA. As a result, efficacious herbicides should be used in fields with a lot of nutsedge and fall panicum pressure to reduce sources of re-infestation in subsequently planted sugarcane.

In the EAA, there is very limited use herbicides for weed control in rice. Successful weed control in rice can be obtained when herbicides are applied early to small and actively growing weeds. Control of nutsedges can be successful with application of 0.75 to 1.33 oz/A of halosulfuron (Sandea, Profine, several trade names) at the two-leaf stage of rice followed by flooding a day after application. Best control of fall panicum has been observed when propanil (Stam 4E, several trade names) is applied at 2 to 3 pt/A at the two-leaf stage of rice followed by flooding a day after application. Application of propanil at the three- to four-leaf stage and delay of flooding are not recommended because of phytotoxicity. Propanil controls susceptible weed species by direct contact action. Therefore, through coverage of emerged weeds is essential for best results. Halosulfuron and propanil can tank-mixed to broaden the spectrum of weed control especially in fields with heavy nutsedge, fall panicum and broadleaf weed pressure.
Calendar of Events

To follow the link, press “Ctrl” and put cursor over link, and “click.”

June 3-8 9th Intecol International Wetlands Conference, Orlando, FL
http://www.conference.ifas.ufl.edu/intecol/

June 6-8 2012 Southern Pasture and Forage Crops Conference, San Juan, PR
http://spfcic.tamu.edu/

June 18-22 FL Cattlemen Association Annual Convention and Allied Trade Show, Marco Island, FL—http://www.floridacattlemen.org/events.html

June 20 – 22 42nd Annual Joint Meeting of the American Society of Sugar Cane Technologists, St. Pete Beach, FL
http://www.assct.org/

July 27-29 Florida Small Farms Conference, Kissimee, FL
http://smallfarms.ifas.ufl.edu/