Features:

Crops:

- Wheat for Grain ...Page 2
- Planting Date for Top Wheat Yields.........................Page 2
- Winter Grazing Favors Following Cotton CropPage 2

Forage:

- Crimson Clover ...Page 3

Weeds and Pesticides:

- New Aquatic Herbicide – FlumioxazinPage 4
- Fencerow Weed ManagementPage 5
- Monitoring for Herbicide Resistant Weeds in TurfPage 6
- Azinphos-Methyl Uses Cancellation
 September 30, 2012; Use of Existing Stocks
 Allowed through September 2013Page 7
- Sugarcane Planting and Early Season Weed Control ...Page 8

Miscellaneous:

- Calendar of events ..Page 9

The Institute of Food and Agricultural Sciences (IFAS) is an Equal Employment Opportunity-Affirmative Action Employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap or national origin. For information on obtaining other extension publications, contact your county Cooperative Extension Office. Florida Cooperative Extension Service/Institute of Food and Agricultural Sciences/University of Florida/Nick Place, Dean.

“Agronomy Notes” is prepared by: Ken Quesenberry, Interim Chair and Y. Newman, Extension Forage Specialist (ycnew@ufl.edu); R. Barnett, Emeritus (rdbt@ufl.edu); J. Ferrell, Extension Weed Specialist (jferrel@ufl.edu); F. Fishel, Pesticide Information Director (weedfr@ufl.edu); L. Gettys, Aquatic Weed Specialist (lgettys@ufl.edu); W. Haller, Aquatic Weed Specialist (whaler@ufl.edu); R. Leon, Weed Specialist (rglg@ufl.edu); J. Marois, Plant Pathologist (marois@ufl.edu); Calvin Odero, Weed Specialist (dcodero@ufl.edu); D. Wright, Extension Agronomist (wright@ufl.edu). The use of trade names does not constitute a guarantee or warrant of products named and does not signify approval to the exclusion of similar products.
Wheat for Grain
Wheat prices are at record highs with good profit potential for the coming year. Growers should get wheat seed lined up as early as possible since best varieties are going to be in short supply. Varieties that have done well in 2 and 3 year averages in the deep south are AGS 2035, AGS 2026, AGS 2060, SS 8641 and a new variety AGS 2038. Seed supply for 2038 is very limited. If any of these varieties are not available Pioneer 26R61 is an old variety that can still perform well if a fungicide is used. The newer, better varieties do respond to fungicides in most years with an average yield increase of 8-10 bu/A while the older varieties that have lost disease resistance may have yield decreases of more than 15-25 bu/A if a fungicide is not used. (Wright & Barnett)

Planting Date for Top Wheat Yields
More wheat is planted too late than too early with a resulting yield loss. Our normal recommended planting date in Florida is November 15 to December 15. However, yields of wheat planted in mid-December are seldom as high as those planted in mid-November. With some of the mid maturing wheat varieties, planting in early November is preferable to later plantings. Some of the highest yields made with wheat have come from plantings made soon after the first of November. There is always the potential for wheat to head out too early from too early planting and be damaged by frost. This is more of a concern on light sandy soils than on heavier soils that hold more moisture. With the wheat season being in an El Nino climate phase which means wetter and cooler conditions in the fall, fewer days may be available to plant and getting the crop in early may be a good idea if it is not an early variety. (Wright)

Winter Grazing Favors Following Cotton Crop
Results from 5 years of grazing vs. not grazing cover crops show that the following cotton yield may be increased by an average of 200 lbs/A of lint. This has been consistent and an intensive look at the cotton roots following cattle vs. no cattle on oat/rye cover shows that root mass is almost double due to having cattle graze the cover. Likewise, soil samples showed an increase in soil nitrate and potassium in the top foot of soil as compared to where cattle where not grazed. Yields of cotton in some years have been as high where grazed without irrigation as with irrigation when not grazed. This is probably due to the enhanced root growth and better nutrition. We have been able to reduce nitrogen applications by a third and potassium applications by half after winter grazing. Overall, grazing cattle on winter grazing may add $250/A to the following cotton crop through increased yield and less fertilizer application. If you don’t have cattle, consider inviting your neighbor who does to plant and graze cattle and to be off the field by the middle of April so that cotton can be planted timely. (Wright & Marois)
Crimson Clover: Early Season Clover for Sandy Soils

Florida because of its geographical location does not have many clovers that can adapt to its mild winter conditions and sandy soils. If looking for a cool-season legume to plant in sandy soils with an early production, Crimson clover might be the candidate to plant.

This annual cool-season legume can be grown for grazing and hay. Plants grow to 2-3 feet tall, and have pubescent (hairy) leaves and stems. This clover grows well in Florida and is most commonly overseeded into perennial pastures due to its early maturity. It has excellent seedling vigor. It is well adapted to sandy, sandy-loam, well drained soils, with a pH ranging from 5.5 to 7.0. It is not adapted to flatwoods. Iron chlorosis (yellowing) is a problem on clay loam soils with pH higher than 7.3 (as is the case of some coastal soils in Florida).

Suggested planting dates are: Oct 10–Nov 15 (Panhandle), Oct. 20-Dec. 1 (North-central), and Nov. 15-Dec. 15 (Central Florida). Suggested planting depth is 1/4 to 1/2 inch.

Graze at a height of 8 to 10 inches and stop grazing when at 3 to 5 inches, provide a rest period between 10 to 20 days. If reseeding is desired, removing of animals will have to occur early (March).
New Aquatic Herbicide – Flumioxazin

Flumioxazin is a new aquatic herbicide that was labeled for use in Florida’s aquatic systems in 2011. This new product, sold by Valent Professional Products under the trade name Clipper, offers an alternate mode of action to those previously available in the aquatics market. Flumioxazin is a protoporphyrinogen oxidase (PPO or protox) inhibitor; the herbicide is thought to inhibit the production of PPO, an enzyme that plays an important role in photosynthesis. Plants treated with flumioxazin quickly become necrotic and die after exposure to sunlight. As with all aquatic herbicides, flumioxazin was first labeled for use in terrestrial systems and has been used for weed control in soybean, cotton, sugarcane and other crops.

Flumioxazin is extremely sensitive to water pH, which has a direct impact on the half-life of the product. For example, the half-life of flumioxazin at pH 5 is as much as 5 days; at pH 7, half-life is around 1 day and at pH 9, half-life may be as little as 15 minutes. Therefore, care should be taken to apply this product when water pH is at its lowest, typically in the early morning. In addition, a buffer should be added to the tank mix if the pH of the diluent is greater than 7. Flumioxazin may be applied as a foliar treatment to emergent and floating weeds or as a trailing-hose treatment for control of submersed weeds. Flumioxazin controls a number of aquatic weeds, but its most important target species are East Indian hygrophila (Hygrophila polysperma) and selected species of algae. The maximum label rate of this product is 400 ppb, but lower rates may be effective; for example, the EC90 – the effective concentration required to reduce plant biomass by 90% compared to control plants – of flumioxazin on hygrophila is 158 ppb (Figure 1), or less than half the maximum label rate. Few products provide good control of this and other problematic invasive species, so flumioxazin can serve as a new tool in the toolbox for aquatic resource managers throughout Florida.

Figure 1. Effect of flumioxazin on East Indian hygrophila (Hygrophila polysperma). Test concentrations from left to right: Control; 50, 100, 200, 400, 600, 800, 1200 ppb. Photo credit: Lyn Gettys
Weed growth along fencerows is a common problem. These weeds, often woody perennials, can damage fence integrity and greatly complicate future fence repair. Additionally, cherry trees are very common along fences and pose a significant health risk to any animal that may browse these toxic leaves. As a general rule, removing this vegetation is best for animal health and fence longevity. Fortunately, the fall and early winter months are prime for management of perennial weeds.

Removal of unwanted trees

Controlling small trees can be accomplished using either foliar or basal-bark applications. Although foliar applications are often the preferred method, it can be the most difficult way to get consistently high levels of control. For foliar applications, coverage of all the foliage is key. Spraying only one side of the plant will rarely be effective. Additionally, drift onto non-target plants can result in a large swath of dead grass and other plants. It is also important to select the proper herbicide since rarely will one product work with equal effectiveness on all species. In my opinion, foliar applications should only be used when there are a large number of seedling trees, making individual plant applications impossible.

A more consistent means of tree management is through a basal application. This method combines triclopyr ester (Remedy, others) with basal oil and applies the mixture directly to the trunk of the tree. This method is highly specific with little potential for off-target damage. It is also highly effective for a vast number of tree species. For more information, see *Herbicide application techniques for woody plant control* http://edis.ifas.ufl.edu/ag245.

Troublesome vines

Another problem I commonly encounter is weedy vines (catclaw vine, kudzu, wild grape, etc). For kudzu, or any other legume weed, an aminopyralid-containing herbicide (GrazoneNext or Milestone) is an excellent choice. For other vines I generally recommend triclopyr ester at 0.5 to 1% solution (0.6 to 1.2 oz of herbicide per gallon). It is well documented that glyphosate alone is not highly effective on most vine species. So, glyphosate alone will rarely provide the desired effect. However, I generally recommend mixing glyphosate with the triclopyr to increase the activity and spectrum of control. In this situation, 1 to 2% glyphosate solution will often improve control without significantly adding to the cost of the application.

It is true that weedy fencerows can provide excellent wildlife habitat for many small game and fowl species. Therefore, if this fence exists in a field that is no longer used for cattle production, allowing weeds to encroach can be a great asset to the farm. But, if cattle are present, maintaining a high-quality fence that is free of woody or vine-type weeds should be held in the highest priority.
Monitoring for Herbicide Resistant Weeds in Turf

The repeated use of herbicides with the same mode of action is the driving factor that promotes the evolution of herbicide resistance in weed populations. Herbicide resistance issues have been reported in multiple agricultural systems for many years. However, herbicide resistant weeds have been rarely observed in turfgrass systems. During the last two years, we have received several reports from golf course superintendents throughout Florida about poor control of annual bluegrass (Poa annua) and goosegrass (Eleusine indica) with ALS-inhibiting herbicides (sulfonylureas). Individuals of these species surviving herbicide treatments were more frequently found in putting greens, where the use of sulfonylurea herbicides is more intense because most of the postemergence herbicides that provide good control of these weed species and are registered for use in greens (e.g. Monument®, Revolver®, TranXit®) belong to this herbicide group.

Early detection of weed escapes after herbicide treatment is critical to properly diagnose the problem. Therefore, evaluating weed control approximately two weeks after treatment with sulfonylurea herbicides is a valuable step.

What should we look for? First, after a postemergence herbicide application, if you find two plants of the same size and age, growing right next to each other, and one dies and the other one survives, this is a good indication that herbicide resistance might be involved. Also, if you notice that in two or three consecutive years the populations of those weeds are not controlled as well as they used to, then that is another important indication that some of the weed control practices are no longer working as effectively. In those cases, it is important to contact your County Extension Agent, so we can help you to properly assessed the situation and determine if you have herbicide resistant weeds, and if so, what the best course of action would be to mitigate the problem. These considerations are only valid if the herbicide was applied at the recommended rate and at the right timing. Very often, we receive reports of weeds surviving applications, but the main reason was that the rate used was too low or that the weeds were too big. Therefore, monitoring weed emergence will help you not only to better time your weed control actions but also to detect early cases of herbicide resistant weeds.
Azinphos-Methyl Uses Cancellation September 30, 2012; Use of Existing Stocks Allowed through September 2013

After considering comments from growers and other stakeholders, EPA has completed a final risk-benefit analysis for the remaining uses of the organophosphate insecticide azinphos-methyl (AZM). AZM can present health risks to workers and can cause negative ecological impacts, while effective alternatives to this insecticide are available to growers. EPA has decided to maintain the September 30, 2012, effective date for cancellation of the remaining uses of AZM, on apples, blueberries, sweet and tart cherries, parsley, and pears.

Due to unusual bad weather conditions in 2012, EPA will modify the cancellation order to allow growers to use only existing stocks of AZM in their possession for another year, through September 30, 2013. All the required mitigation measures now reflected on AZM labeling will remain in effect during this use. Distribution or sale of AZM after September 30, 2012, remains prohibited. This decision will not result in greater use of AZM than originally anticipated, and provides a safer alternative to disposal arrangements.

First registered in 1959, AZM has been used to control insect pests on a wide variety of agricultural crops and on ornamentals, tobacco, and trees. In the late 1990s, EPA began reevaluating AZM with the full involvement of a wide range of stakeholders. In 2001, certain uses were immediately canceled or phased out over a four-year period because of concerns regarding worker health and negative ecological impacts.

In 2006, EPA announced a final decision to phase out the remaining ten AZM uses in three phases, with the last uses ending September 30, 2012. This phase-out helped facilitate the transition to safer alternatives, and includes mitigation measures such as reduced application rates and buffer zones around water bodies and occupied dwellings.
Sugarcane Planting and Early Season Weed Control

Sugarcane planting will be starting this October in many cane production regions of southern Florida. Fields will be planted following the fallow period or successively. For successive cane planting, weed populations are not severely reduced between crops and weed pressure will increase if adequate control measures are not implemented. The fallow period between final ratoon harvest and planting is usually used to manage troublesome perennial weeds such as bermudagrass. This is accomplished primarily by a combination of mechanical cultivation and herbicide application.

Preemergence herbicides can be applied broadcast in cane over the entire field immediately after the rows have been rolled or packed. This is ideal for cane planted early but before temperatures drop later in the year. Weeds not controlled in early planted cane will reach maturity and produce seed before temperatures drop later in the year. For control of annual grass and broadleaf weeds in early planted cane, pendimethalin (Prowl H2O) tank-mixed with either atrazine or metribuzin should be applied immediately following planting. Pendimethalin, atrazine, and metribuzin should be applied at 7 pts/acre, 8 pts/acre, and 1.3 to 2.6 lbs/acre, respectively. Metribuzin should not be used on cane grown on sandy soil.

Before herbicide application, applicators must read the label and follow all instructions carefully. Accurate calibration of application equipment is also extremely important in providing effective weed control. In addition, the effectiveness and economic usefulness of herbicides must be evaluated by each grower for his particular situation.
Calendar of Events

To follow the link, press “Ctrl” and put cursor over link, and “click.”

Oct 11 UF/IFAS North Central Florida Turfgrass Field Day, Citra, FL
http://gatorturf.eventbrite.com

Oct 16 Pasture Weed Day 2012, Ona, FL
http://rcrec-ona.ifas.ufl.edu/events/weedday_2012_brochure.pdf

Oct 16-18 Sunbelt Ag Expo, Moultrie, GA
http://sunbeltexpo.com/

https://www.acsmeetings.org/

Nov 20 Drip Irrigation School, Suwannee Valley Agricultural Extension Center, Live Oak, FL. http://smallfarms.ifas.ufl.edu/